Students Win Awards at the SEAS 2018 R&D Showcase

Our students have participated and presented their projects in SEAS R&D Annual Showcase in February 2018.  From our graduate students Shuyue Guan presented on Breast Cancer detection using transfer learning in convolution neural networks, Kristina Landino presented on Silence in Videos, and Apurva Singh presented on the effectiveness of radiation therapy for the treatment of head and neck squamous cell carcinoma. Apurva was awarded the $3,000 AccelerateGW I-Corps Site Program Grants, aimed to cover travel expenses related to client interviews and limited prototyping.

Zainab Mahmood and Nada Kamona, our undergraduate seniors, presented on “Automated Segmentation Algorithm for Thermal Breast Images” and “Reproducibility of Quantitative Image Texture Features in Identifying Tumor Regions in Thermal Breast Images” respectively.

Our undergraduate students Aidan Murray, Shannon Toole and Pannie Xu won the $2,000 Best Undergraduate Poster for their project titled “Symmetrical Cluster Analysis for Thermographic Breast Cancer Detection”.

Congratulations to our students on their accomplishments! Check their projects here and the photo gallery here.

The SEAS R&D Showcase is an annual event held at the School of Engineering and Applied Science, where graduate and undergraduate students from all different departments have the chance to present their research and projects. For more information, click here.

 

Students Present at SPIE in Houston, TX

On February 11 and 12, Kristina Landino (BME) and Shuyue Guan (BME), advised by Dr. Murray Loew (BME), each presented a paper at the SPIE Medical Imaging conference, held in Houston, TX

K. Landino and M. Loew. “Comparing salience detection algorithms in mammograms.” (presented by Kristina Landino).

S. Guan, H. Asfour, M. Loew, N. Sarvazyan, and N. Muselimyan. “Lesion detection for cardiac ablation from auto-fluorescence hyperspectral images.” (presented by Shuyue Guan)

*Shuyue Guan presenting his poster at SPIE 2018

*Kristina Landino presenting her project. Photo credit to Dr. Ken Hanson

Student presents at 46th Annual IEEE AIPR 2017 Workshop

Our PhD student, Shuyue (Frank) Guan, has attended the 46th Annual IEEE AIPR 2017: Big Data, Analytics, and Beyond in Washington DC. Frank gave a presentation about breast cancer detection using transfer learning in the convolutional neural networks.

The Applied Imagery Pattern Recognition (AIPR) workshop sponsored by IEEE is to bring together researchers from government, industry, and academia across a broad range of disciplines. The Big Data Analytic domains represented at AIPR 2017 include computer vision, remote sensing imagery, medical imaging, and robotics and tracking, with a focus on machine learning and deep learning.

Here is a brief summary of Frank’s project and presentation:

Traditional mammographic detection based on the computer-aided diagnosis (CAD) tools rely on manually extracted features, but hand-crafted features have a variety of drawbacks such as domain specific, and the process of feature design can be tedious, difficult, and non-generalizable. An alternative method for feature extraction is to learn features from whole images directly through the Convolutional Neural Network (CNN), however, training the CNN from scratch needs a huge number of labeled images. Such a requirement is infeasible for mammographic tumor images because they are difficult to obtain, diseases are scarce in the datasets, and expert labeling is expensive. A promising solution is to use a limited number of labeled medical images to fine-tune a pre-trained CNN model, which has been trained by very large image datasets from other fields. This approach is also called transfer learning. In fact, some results of transfer learning are counter-intuitive: previous studies show that the features learned from natural images could be transferred to medical images, even if the target images greatly differ from the pre-trained source images.

Using mammographic images from the two databases, we tested 3 training methods: (1) trained a CNN from scratch, (2) applied the complete VGG-16 model to extract features from input images and used these features to train a classifier, (3) updated the weights in several last layers of VGG-16 by back-propagation (fine-tuning) to detect abnormal regions. By comparison, we found that the method (2) is ideal for study. Then, we used method (2) to classify regions: benign vs. normal, malignant vs. normal and abnormal vs. normal from DDSM. Our results show an average accuracy of about 90.5% for abnormal vs. normal classifications on mammography and the AUC is 0.96 are competitive. Our best model could reach 95% accuracy for abnormal vs. normal case. Compared with recent studies, we used much more images for training, different pre-trained model and simpler classifier.

This study shows that applying transfer learning in CNN can detect female breast cancer from mammographic images. And, training classifier by extracted features is a fast way to train a good classifier in transfer learning.

Students Attend BMES Annual Conference in Phoenix

Our students Aidan Murray, Shannon Toole, Zainab Mahmood and Nada Kamona have participated and presented their projects in the Biomedical Engineering Society Annual Conference held on October 14th in Phoenix Arizona. Aidan and Shannon presented on cluster and quadrant analysis for thermographic breast cancer detection. Zainab presented her work on developing an automated segmentation algorithm for thermal breast images. Nada presented her summer project at the FDA on the variability of image texture quantification in simulated medical imaging systems. Check their projects here and the photo gallery here.

The annual meeting is held annually by The Biomedical Engineering Society (BMES) and is the home for more than 2000 scientific presentations, platform sessions, exhibit hall and career fair, offering networking and career development opportunities for students and professionals.

Congrats to our students on their accomplishments!