
ML Applied
Programming
Basics
Defining and Running Basic Models
and Evaluating Performance

Previously
we
learned…

What is machine
learning?

What are the
major categories

of machine
learning

(Supervised vs Unsupervised)?

What are some
types of machine
learning models
(Regression vs Classification,

Logistic, Lasso, K-Means, etc.)

Basics of how we
set up a model

(Data Prep – Training/Testing
Split, Train the Model,

Evaluate – Cross validation,
etc.)

Today’s Topic - So what does this translate to
for practical purposes?

Assess the
data

Pick your
model/
framework
Literature review

Prepare
your data

Basic training/ testing
split

Train your
model

Evaluate!

We’re going to break this into 5 Steps…

Today we will cover…

Today’s talk will
cover supervised
learning

Will be in python
Not going to
involve any theory

It helps to comment your code

Stack Overflow can be your best friend

Functions make it easy to repeat code

When all else fails – google

Some general tips before we get started…

1. Pick Your
Language

2. Choose How You
Want to Code

3. Import Your
Packages/Libraries

Getting Started

Go!

import numpy as np

library(stats)

Main Packages Used Today (Python)

Image Model:
Keras
Tensorflow

Data Model:
Scikit-Learn

A B

Follow Along

A. For those who want to try to make an
imaging model, use the sample eye images

B. For those who want to try a data based
model, use the diabetic retinopathy data

All Packages Used

import cv2

import pydicom as dicom

import PIL as Image

import pandas as pd

import numpy as np

import tensorflow as tf

from tensorflow import keras

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

from sklearn import model_selection

from sklearn.model_selection import cross_val_score

Assess the
data

Pick your
model/
framework

Prepare
your data

Train your
model

Evaluate!

1. Assess the Data

• This step doesn’t have to be done with
code

• If you have an image, display it.

• Dataset or Array? Look at the contents

• Count the number of rows and the
number of images, don’t lose data later!

1. Assess the Data – Image Model

#Sample Code to display the image using CV2, this code loads the package, loads in the file, then
displays the image

import cv2

image = cv2.imread(yourdirectoryhere)

plt.imshow(image)

#Sample Code to display DICOM this code loads the package, loads the file, converts it
appropriately, then displays the file

import pydicom as dicom

import PIL as Image

ds = dicom.dcmread(yourdirectoryhere)

shape = ds.pixel_array

img = Image.fromarray(image_2d_scaled)

A

1. Assess the Data – Data Model

#Sample Code that looks at the number of rows in a dataset, then the first 5
columns of the dataset
import pandas as pd

Dataset = pd.read_csv(yourdirectoryhere)

len(dataset)

pd.dataset.columns

#Sample Code to look at the total number of rows and columns in an array and
then save them to a variable
import numpy as np

nparray = ([],[],yourarraygoeshere)

rows, columns = nparray.shape

B

Assess the
data

Pick your
model/
framework

Prepare
your data

Train your
model

Evaluate!

2. Pick Your Model/ Framework

• For Images, we’ll use a CNN

import tensorflow as tf

from tensorflow import keras

• For data model – a Logistic regression

from sklearn.linear_model import

LogisticRegression

A

B

The nice thing about scikit-learn and tensorflow is they both have plenty of pre-
packaged models and great documentation!

Assess the
data

Pick your
model/
framework

Prepare
your data

Train your
model

Evaluate!

3. Prepare Your Data

• Think through any issues with the data:
• Do any values need to be standardized? How are we going to handle missing

values?

• For example data with missing outcome variables likely can’t be used for
training/ testing purposes

• Next let’s make a training/ testing split

3. Prepare Your Data – Image Model

directory = yourdirectoryhere

img_height = 256

img_width = 256

batch_size = 1

train_ds = tf.keras.preprocessing.image_dataset_from_directory(

directory,

validation_split=0.2,

subset="training",

seed=123,

image_size=(img_height, img_width),

batch_size=batch_size)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(

directory,

validation_split=0.2,

subset="validation",

seed=123,

image_size=(img_height, img_width) ,

batch_size=batch_size)

A

There are lots of ways to
load your data – I like

this one because you can
specify batch_size =

3. Prepare Your Data – Data Model

dataset = pd.read_csv(yourdirectoryhere)

from sklearn.model_selection import train_test_split

X = dataset[[“Pregnancies”, “Glucose”, “BloodPressure”,

“SkinThickness”, “Insulin”, “BMI”, “DiabetesPedigreeFunction”,

“Age”]]

y = dataset[[‘Outcome’]]

X_train, X_test, y_train, y_test = train_test_split(

X, y,

test_size=0.2,

random_state=42)

B

Assess the
data

Pick your
model/
framework

Prepare
your data

Train your
model

Evaluate!

4. Train Your Model

• Usually for simpler models (like Logistic Regression) we’d have a
feature selection step here

• We’re going to ignore this for today and focus on just defining the
model then training it

• Nice thing about deep learning – does this for you!

Training – Image Model, Define the Model
First
#Start the model

num_classes = 2

#Make the layers

Model = tf.keras.Sequential([

tf.keras.layers.experimental.preprocessing.Rescaling(1./255),

tf.keras.layers.Conv2D(32, 3, activation='relu'),

tf.keras.layers.MaxPooling2D(),

tf.keras.layers.Conv2D(32, 3, activation='relu'),

tf.keras.layers.MaxPooling2D(),

tf.keras.layers.Conv2D(32, 3, activation='relu'),

tf.keras.layers.MaxPooling2D(),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(128, activation='relu'),

tf.keras.layers.Dense(num_classes)

])

#Compile the model

model.compile(

optimizer='adam',

loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=['accuracy'])

A

Training – Image Model, Training is Easy!

#Train the model

model.fit(

train_ds,

validation_data=val_ds,

epochs=3

)

A

Training – Data Model (Much Simpler)

logreg = LogisticRegression()

logreg.fit(X_train, y_train)

B

Assess the
data

Pick your
model/
framework

Prepare
your data

Train your
model

Evaluate!

5. Evaluate: Image Model

• Run model on testing sample

accuracy = model.evaluate(val_ds)[1]

• Cross-Validation

from sklearn.model_selection import KFold

sklearn.model_selection.KFold(n_splits=5, *,

shuffle=False, random_state=None)

A

Cross Validation for the image model is a bit
complicated, requires a loop
j = 0

for train_idx, val_idx in list(kfold.split(train_x,train_y)):

x_train_df = df.iloc[train_idx]

x_valid_df = df.iloc[val_idx]

j+=1

train_ds = tf.keras.preprocessing.image_dataset_from_directory(

directory,

validation_split=0.2,

subset="training",

…

###Same code as your model goes here then evaluate for each kfold

accuracy = model.evaluate(val_ds)[1])

print(“Kfold = “ + str(j) + str(accuracy))

A

5. Evaluate: Data Model

• Run model on testing sample

y_pred = logreg.predict(X_test)

print('Accuracy of logistic regression classifier on test set: {:2f}’

.format(logreg.score(X_test, y_test)))

• Cross-Validation
from sklearn import model_selection

from sklearn.model_selection import cross_val_score

kfold = model_selection.KFold(n_splits=10)

modelCV = LogisticRegression()

scoring = 'accuracy'

results = model_selection.cross_val_score(modelCV, X_train, y_train,

cv=kfold, scoring=scoring)

print("10-fold cross validation average accuracy: %.3f" % (results.mean()))

B

Putting it all together…

Full Image
Model

import tensorflow as tf

from tensorflow import keras

directory = yourdirectoryhere

batch_size = 1

img_height = 256

img_width = 256

train_ds = tf.keras.preprocessing.image_dataset_from_directory(

directory,

validation_split=0.2,

subset="training",

seed=123,

image_size=(img_height, img_width),

batch_size=batch_size)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(

directory,

validation_split=0.2,

subset="validation",

seed=123,

image_size=(img_height, img_width),

batch_size=batch_size)

#Train the model

model.fit(

train_ds,

validation_data=val_ds,

epochs=3

)

#Start the model

num_classes = 2

#Make the layers

Model = tf.keras.Sequential([

tf.keras.layers.experimental.preprocessing.Rescaling(1./255)

,

tf.keras.layers.Conv2D(32, 3, activation='relu'),

tf.keras.layers.MaxPooling2D(),

tf.keras.layers.Conv2D(32, 3, activation='relu'),

tf.keras.layers.MaxPooling2D(),

tf.keras.layers.Conv2D(32, 3, activation='relu'),

tf.keras.layers.MaxPooling2D(),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(128, activation='relu'),

tf.keras.layers.Dense(num_classes)

])

#Compile the model

model.compile(

optimizer='adam',

loss=tf.losses.SparseCategoricalCrossentropy(from_logits=Tru

e),

metrics=['accuracy’])

accuracy = model.evaluate(val_ds)[1]

A

Full Data
Model

import numpy as np

import pandas as pd

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

dataset = pd.read_csv(r"C:\Users\desti\Desktop\Diabetic_Retinopathy_Data.csv")

X = dataset[["Pregnancies",

"Glucose",

"BloodPressure",

"SkinThickness",

"Insulin",

"BMI",

"DiabetesPedigreeFunction",

"Age"]]

y = dataset[["Outcome"]]

X_train, X_test, y_train, y_test = train_test_split(

X, y,

test_size=0.2,

random_state=42)

logreg = LogisticRegression()

logreg.fit(X_train, y_train)

y_pred = logreg.predict(X_test)

print('Accuracy of logistic regression classifier on test set: {:2f}'

.format(logreg.score(X_test, y_test)))

from sklearn import model_selection

from sklearn.model_selection import cross_val_score

kfold = model_selection.KFold(n_splits=10)

modelCV = LogisticRegression()

scoring = 'accuracy'

results = model_selection.cross_val_score(modelCV, X_train, y_train,

cv=kfold, scoring=scoring)

print("10-fold cross validation average accuracy: %.3f" % (results.mean()))

B

Common
Pitfalls When
You’re Just
Getting
Started (For
Python)

• Pathways to a directory can change depending on if
you’re on a Mac or Windows

• Packages can be hard to install or require
dependencies – sometimes need to reinstall things

• Need to indent code

• Forget to save your variable to a value

• Forget a parenthesis

When all else fails – Stack Overflow and Google!!!

