
• Blur is lack of sharpness and degradation of an

image due to motion and/or poor focus.

• Motion blur is a known phenomenon in full-field

digital mammography that arises during image

acquisition [5].

• Blur has been reported to reduce lesion detection

performance and mask small microcalcifications
[1], resulting in failure to detect smaller

abnormalities until they reach more advanced

stages [4].
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We propose using machine-learning algorithms to

detect motion blur in mammograms automatically,

which could be used as a support for the clinical

decision-making process during the mammography

exam. The goals of this project are to:

1. Simulate blur in mammograms to mimic the effect

of blurring produced during image acquisition.

2. Investigate the ability of various classifiers to

detect simulated blur in digital mammograms

Fig 1. a) Blurred mammogram containing a microcalcification in the 

posterior of the lower breast that cannot be detected[4]. b) Schematic 

diagram showing how mammography is done.

OBJECTIVES

Fig 7. Blur Quantification measurements for mammograms without blur and 

mammograms with blur at five levels of blur severity using blur measure 

operators Spatial frequency measure (left) and Diagonal Laplacian (right) 

Each box plot contain measurements of 3748 mammogram patches.
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Random-Motion Blur Model

Displace an individual pixel by a

random vector (within the range of the

blur effect), and the pixel contribution

to the overall image is then sampled

on a regular pixel grid using subpixel

linear interpolation [2][5].

Blur magnitudes of 0.1, 0.25, 0.5, 1.0 and 1.5 mm of

tissue motion were simulated on 244 Mammograms

(INbreast database).

Fig 2. The trajectory (bold green) is sampled to 

create the blur point-spread function (PSF) mask [2].

Fig 3. Simplified flowchart of motion blur trajectory and blur (PSF) mask 

generation [3].
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Fig 4. Examples of generated blur masks (point spread functions, [PSFs]), 

using the random trajectories approach, at five levels of blur. The pixel 

resolution is 70 microns for all masks. Blur mask size determines 

maximum amount of breast movement.

Fig 5. Mammogram patches (28 x 28 mm) with 5 levels of simulated blur. 

a) b) 

• It is estimated that 20% of screening

mammograms show elements of blur [4] [5].

• Motion blur can occur due to patient movement

and paddle motion during the clamping phase,

which might cause movements of up to 1.5 mm in

the vertical plane [5].

• As far as we know, no work has been done to

automatically detect motion blur in

mammograms other than Hill et al [3].

Although limited work has been done to quantify the

effects of motion blur on radiologists’ performance,

there is evidence that motion blur could mask

abnormalities and might not be detected visually by

radiologists.

Automatic detection of blurry mammograms at the

exam time has the potential to reduce return visits,

false-negative decisions, and their implications in

clinical practice.

Future Work:

• Validating the realism of the blur model.

• Simulate blur locally instead of globally.

Fig 9. Average Classifiers’ performance on testing data to classify unblurry 

mammograms and blurry mammograms at 5 levels of simulated blur.

Blur Measure Operators

A set of 9 operators measure the amount of blur at

each pixel and in its local neighborhood. Examples:
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Fig 6. Average distribution of 

200 generated blur masks 

(PSFs) of various sizes. Same 

scale for all plots demonstrating 

the differences in magnitude and 

spread.
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Classification:

Patches divided into 70% training, 30% testing, 8745

and 3748 patches per class respectively.

TPR FNR

PPV

FDR

Ensemble Bagged Trees

70.00%

80.00%

90.00%

100.00%

Accuracy Sensitivity Specificity PPV F-score

Pe
rc

en
ta

ge

Classifiers’ Performance on Testing Data

Ensemble Bagged Trees Fine Gaussian SVM Weighted KNN

Fig 8. Confusion matrix of Ensemble Bagged Trees classifier for the 

training data
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