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Segmentation of Thermal Breast Images Using Convolutional

Segmentation Architecture

For the U.S. women, breast cancer will be
diagnosed among about 1 in 8 during their lifetime

and it is the second leading reason for death.

Breast infrared images
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Investigating the use of Infrared

thermography as a noninvasive adjunctive
technique to mammography for breast screening.
Thermal imaging Is fast, passive (no radiation Is
emitted), and non-contact. To reduce the area for
tumor search and searching time, we wish to

segment the breast area from the thermal image,

which includes regions of chest and abdomen.

Previous Studies

Breast thermogram segmentation

Automated segmentation algorithm via Ellipse detection, Nada Kamona et al. (our lab), 2018

Infrared Thermography
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Infrared Is In the invisible region of spectrum, but
it can provide more Information of the object.
Most of the radiation emitted by human body Is In

the Infrared region. Also, IR Is passive

thermography, it’s safer and easier to use than
detection methods like

other X-ray and

ultrasound.

Screened 11 patients by thermal infrared camera

(N2 Imager) In our lab, for each patient, 15

samples with manual cropped regions.

Experiment 1
» Randomly select 12 samples of one patient to training set

» The remaining 3 to testing set
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Experiment 2

» One patient’s all 15 samples as testing set
» Other 10 patients’ samples as training set
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Test Criterion

Jaccard Similarity or Intersection-over-union (loU)

Area of Overlap

loU =
Area of Union
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RESULTS

Experiment 1
Ave: 0.9424 Std: 0.0248
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Comparison

Original breast image Gray segmentation image Manually cropped regions
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DISCUSSION

® The autoencoder-like neural networks with

Convolutional and Deconvolutionalcan be used
to segment breast regions.

® Adding training samples from the same patient
can Improve segmentation performance (Ave
loU: 0.83—0.94), and more various training
samples help improve performance .

® For the same patient, the autoencoder can

create other regions iInstead of manually

cropping after well training.




